Abstract:Recent advancements in layout pattern generation have been dominated by deep generative models. However, relying solely on neural networks for legality guarantees raises concerns in many practical applications. In this paper, we present \tool{DiffPattern}-Flex, a novel approach designed to generate reliable layout patterns efficiently. \tool{DiffPattern}-Flex incorporates a new method for generating diverse topologies using a discrete diffusion model while maintaining a lossless and compute-efficient layout representation. To ensure legal pattern generation, we employ {an} optimization-based, white-box pattern assessment process based on specific design rules. Furthermore, fast sampling and efficient legalization technologies are employed to accelerate the generation process. Experimental results across various benchmarks demonstrate that \tool{DiffPattern}-Flex significantly outperforms existing methods and excels at producing reliable layout patterns.
Abstract:Optimization algorithms are widely employed to tackle complex problems, but designing them manually is often labor-intensive and requires significant expertise. Global placement is a fundamental step in electronic design automation (EDA). While analytical approaches represent the state-of-the-art (SOTA) in global placement, their core optimization algorithms remain heavily dependent on heuristics and customized components, such as initialization strategies, preconditioning methods, and line search techniques. This paper presents an automated framework that leverages large language models (LLM) to evolve optimization algorithms for global placement. We first generate diverse candidate algorithms using LLM through carefully crafted prompts. Then we introduce an LLM-based genetic flow to evolve selected candidate algorithms. The discovered optimization algorithms exhibit substantial performance improvements across many benchmarks. Specifically, Our design-case-specific discovered algorithms achieve average HPWL improvements of \textbf{5.05\%}, \text{5.29\%} and \textbf{8.30\%} on MMS, ISPD2005 and ISPD2019 benchmarks, and up to \textbf{17\%} improvements on individual cases. Additionally, the discovered algorithms demonstrate good generalization ability and are complementary to existing parameter-tuning methods.
Abstract:The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain.
Abstract:In this paper, we delve deeper into the Kullback-Leibler (KL) Divergence loss and mathematically prove that it is equivalent to the Decoupled Kullback-Leibler (DKL) Divergence loss that consists of (1) a weighted Mean Square Error (wMSE) loss and (2) a Cross-Entropy loss incorporating soft labels. Thanks to the decoupled structure of DKL loss, we have identified two areas for improvement. Firstly, we address the limitation of KL loss in scenarios like knowledge distillation by breaking its asymmetric optimization property along with a smoother weight function. This modification effectively alleviates convergence challenges in optimization, particularly for classes with high predicted scores in soft labels. Secondly, we introduce class-wise global information into KL/DKL to reduce bias arising from individual samples. With these two enhancements, we derive the Generalized Kullback-Leibler (GKL) Divergence loss and evaluate its effectiveness by conducting experiments on CIFAR-10/100, ImageNet, and vision-language datasets, focusing on adversarial training, and knowledge distillation tasks. Specifically, we achieve new state-of-the-art adversarial robustness on the public leaderboard -- RobustBench and competitive knowledge distillation performance across CIFAR/ImageNet models and CLIP models, demonstrating the substantial practical merits. Our code is available at https://github.com/jiequancui/DKL.
Abstract:Recent diffusion model customization has shown impressive results in incorporating subject or style concepts with a handful of images. However, the modular composition of multiple concepts into a customized model, aimed to efficiently merge decentralized-trained concepts without influencing their identities, remains unresolved. Modular customization is essential for applications like concept stylization and multi-concept customization using concepts trained by different users. Existing post-training methods are only confined to a fixed set of concepts, and any different combinations require a new round of retraining. In contrast, instant merging methods often cause identity loss and interference of individual merged concepts and are usually limited to a small number of concepts. To address these issues, we propose BlockLoRA, an instant merging method designed to efficiently combine multiple concepts while accurately preserving individual concepts' identity. With a careful analysis of the underlying reason for interference, we develop the Randomized Output Erasure technique to minimize the interference of different customized models. Additionally, Blockwise LoRA Parameterization is proposed to reduce the identity loss during instant model merging. Extensive experiments validate the effectiveness of BlockLoRA, which can instantly merge 15 concepts of people, subjects, scenes, and styles with high fidelity.
Abstract:Traditional methods for reasoning segmentation rely on supervised fine-tuning with categorical labels and simple descriptions, limiting its out-of-domain generalization and lacking explicit reasoning processes. To address these limitations, we propose Seg-Zero, a novel framework that demonstrates remarkable generalizability and derives explicit chain-of-thought reasoning through cognitive reinforcement. Seg-Zero introduces a decoupled architecture consisting of a reasoning model and a segmentation model. The reasoning model interprets user intentions, generates explicit reasoning chains, and produces positional prompts, which are subsequently used by the segmentation model to generate precious pixel-level masks. We design a sophisticated reward mechanism that integrates both format and accuracy rewards to effectively guide optimization directions. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Seg-Zero achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Experiments show that Seg-Zero-7B achieves a zero-shot performance of 57.5 on the ReasonSeg benchmark, surpassing the prior LISA-7B by 18\%. This significant improvement highlights Seg-Zero's ability to generalize across domains while presenting an explicit reasoning process. Code is available at https://github.com/dvlab-research/Seg-Zero.
Abstract:Large language models (LLMs) are trained on enormous documents that contain extensive world knowledge. However, it is still not well-understood how knowledge is acquired via autoregressive pre-training. This lack of understanding greatly hinders effective knowledge learning, especially for continued pretraining on up-to-date information, as this evolving information often lacks diverse repetitions like foundational knowledge. In this paper, we focus on understanding and improving LLM knowledge learning. We found and verified that knowledge learning for LLMs can be deemed as an implicit supervised task hidden in the autoregressive pre-training objective. Our findings suggest that knowledge learning for LLMs would benefit from methods designed to improve generalization ability for supervised tasks. Based on our analysis, we propose the formatting-based data augmentation to grow in-distribution samples, which does not present the risk of altering the facts embedded in documents as text paraphrasing. We also introduce sharpness-aware minimization as an effective optimization algorithm to better improve generalization. Moreover, our analysis and method can be readily extended to instruction tuning. Extensive experiment results validate our findings and demonstrate our methods' effectiveness in both continued pre-training and instruction tuning. This paper offers new perspectives and insights to interpret and design effective strategies for LLM knowledge learning.
Abstract:Logic synthesis, a critical stage in electronic design automation (EDA), optimizes gate-level circuits to minimize power consumption and area occupancy in integrated circuits (ICs). Traditional logic synthesis tools rely on human-designed heuristics, often yielding suboptimal results. Although differentiable architecture search (DAS) has shown promise in generating circuits from truth tables, it faces challenges such as high computational complexity, convergence to local optima, and extensive hyperparameter tuning. Consequently, we propose a novel approach integrating conditional generative models with DAS for circuit generation. Our approach first introduces CircuitVQ, a circuit tokenizer trained based on our Circuit AutoEncoder We then develop CircuitAR, a masked autoregressive model leveraging CircuitVQ as the tokenizer. CircuitAR can generate preliminary circuit structures from truth tables, which guide DAS in producing functionally equivalent circuits. Notably, we observe the scalability and emergent capability in generating complex circuit structures of our CircuitAR models. Extensive experiments also show the superior performance of our method. This research bridges the gap between probabilistic generative models and precise circuit generation, offering a robust solution for logic synthesis.
Abstract:Understanding the structure and function of circuits is crucial for electronic design automation (EDA). Circuits can be formulated as And-Inverter graphs (AIGs), enabling efficient implementation of representation learning through graph neural networks (GNNs). Masked modeling paradigms have been proven effective in graph representation learning. However, masking augmentation to original circuits will destroy their logical equivalence, which is unsuitable for circuit representation learning. Moreover, existing masked modeling paradigms often prioritize structural information at the expense of abstract information such as circuit function. To address these limitations, we introduce MGVGA, a novel constrained masked modeling paradigm incorporating masked gate modeling (MGM) and Verilog-AIG alignment (VGA). Specifically, MGM preserves logical equivalence by masking gates in the latent space rather than in the original circuits, subsequently reconstructing the attributes of these masked gates. Meanwhile, large language models (LLMs) have demonstrated an excellent understanding of the Verilog code functionality. Building upon this capability, VGA performs masking operations on original circuits and reconstructs masked gates under the constraints of equivalent Verilog codes, enabling GNNs to learn circuit functions from LLMs. We evaluate MGVGA on various logic synthesis tasks for EDA and show the superior performance of MGVGA compared to previous state-of-the-art methods. Our code is available at https://github.com/wuhy68/MGVGA.
Abstract:Large language models (LLMs) have shown significant promise in question-answering (QA) tasks, particularly in retrieval-augmented generation (RAG) scenarios and long-context applications. However, their performance is hindered by noisy reference documents, which often distract from essential information. Despite fine-tuning efforts, Transformer-based architectures struggle to prioritize relevant content. This is evidenced by their tendency to allocate disproportionate attention to irrelevant or later-positioned documents. Recent work proposes the differential attention mechanism to address this issue, but this mechanism is limited by an unsuitable common-mode rejection ratio (CMRR) and high computational costs. Inspired by the operational amplifier (OpAmp), we propose the OpAmp adaptation to address these challenges, which is implemented with adapters efficiently. By integrating the adapter into pre-trained Transformer blocks, our approach enhances focus on the golden context without costly training from scratch. Empirical evaluations on noisy-context benchmarks reveal that our Qwen2.5-OpAmp-72B model, trained with our OpAmp adaptation, surpasses the performance of state-of-the-art LLMs, including DeepSeek-V3 and GPT-4o.